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Abstract
Using the vector-wave multiple-scattering method we have calculated the
photonic band structures of AB3 and B3 crystals composed of perfect metal
spheres in air. It is shown that AB3 photonic crystal contains a large photonic
band gap and B3 photonic crystal has more than one gap when the filling ratio
of metal spheres exceeds a threshold. The multiple photonic gaps of the B3

structure are useful in the design of optical multi-channel perfect mirrors and
optical multi-band filters in the microwave regime.

Photonic band-gap (PBG) crystals are dielectric materials where the dielectric constant is
modulated periodically in either one, two, or all three spatial directions. The variation of the
dielectric constant affects the propagating behaviours of the corresponding Bloch waves; the
strongest influence occurs near the Brillouin boundaries where travelling waves are transformed
into standing waves, and this results in photonic band gaps. The existence of photonic band
gaps has attracted much attention in recent years because of their vast potential for applications
[1–5]; it also provides new ways to control light propagation and underlying physical processes.
There are possible applications in suppression of electron–hole recombination [1], perfect
mirrors, optical band filters, and production of high-efficiency lasers [6, 7].

For most crystals, there is only one gap in the band structure. That is to say, there is one
perfect mirror, and that is only for a specific frequency. It is inconvenient and uneconomical
to use such an optical mirror. In this paper we propose theoretically using photonic crystals of
B3 structure (figure 1(b)) composed of perfect metal spheres in air to manufacture an optical
mirror. The advantage of using such a structure is that there are multiple photonic band gaps;
this feature leads to an important application in making optical multi-band filters that can work
for more than one specific frequency.

To fabricate PBG crystals, the following two techniques are widely adopted: (1) micro-
electronic fabrication techniques [8–10]; (2) synthetic opal/inverse-opal synthesis technol-
ogies [11–16]. By using such techniques, photonic crystals at microwave length scales are
not difficult to make. However, the fabrication of photonic crystals at optical length scales is
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Figure 1. The crystal structures: (a) AB3 structure; (b) B3 structure.

rather difficult and significant progress has been made only recently. For conventional dielectric
photonic crystals, the opening of a full photonic band gap depends very much on the global
symmetry of the crystal structure. Theoretical studies and experimental investigations show
that only a few of them have a complete band gap; notable examples are the diamond structure
with high-dielectric-constant spheres embedded in a low-dielectric-constant background and
the face-centred cubic structure made using inverse-opal techniques.

In addition to the conventional photonic crystals, photonic crystals with metal components
have also been attracting more attention in the last few years [17–26]. Both theoretical and
experimental studies have shown that any structure composed of metal or multiply coated
spheres each with an inner metal layer (such as FCC, BCC, and SC structures) can give a
complete photonic band gap [20, 25, 26] if the filling ratio exceeds a threshold. The size and
frequency of the photonic gap is determined by the filling ratio and the local configuration
rather than the crystal symmetry and long-range order [25, 26].

In this paper, we have calculated the photonic band structures of a new crystal type—the
AB3 structure (figure 1(a)) of perfect metal spheres in air. This structure is chosen because it
has four spheres per primitive cell, and large variation in the dielectric constant in space can be
realized by using different combinations of A and B spheres. It is shown that a large photonic
band gap exists in the AB3 structure for a wide range of ratios between the A and B radii. The
photonic gap is large enough to compensate for the loss due to the boundary effect of the finite
crystal. Also, in the microwave regime, samples of AB3 photonic crystals are not difficult to
fabricate.

The calculation below is based on the well-established vector-wave multiple-scattering
theory (MST) for electromagnetic waves (see e.g. references [27–31]). The method is also
called the vector-wave KKR approach. The scalar-wave multiple-scattering method was
originally developed long ago for electronic band-structure calculations for solids, where
electrons are described by scalar wavefunctions. The extension of the multiple-scattering
method to vector waves was carried out independently by Ohtaka [27], Lamb et al [28], Wang
et al [30], Modinos [29], and Moroz [31], and applied to study a variety of properties of
electromagnetic waves. The nice feature of the MST method is the separation of the pure
geometrical structure factor of the lattice and the scattering properties of the spheres. The
photonic band structures can be obtained by solving the following secular equations:

Det

∣∣∣∣∣δss ′δll′δmm′δσσ ′ −
∑
l′′m′′σ ′′

Gss ′
lmσ,l′′m′′σ ′′(�k)ts ′l′′m′′σ ′′,l′m′σ ′

∣∣∣∣∣ = 0. (1)
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Note thatGss ′ does not include the s = s ′ term. Here, (l,m) are the angular momentum indices
and s is the index of the scatterer in the primitive cell. t s

′
lmσ,l′m′σ ′ is the scattering T -matrix

element for the spheres. Gss ′
lmσ,l′m′σ ′(�k) are the Fourier transforms of the geometrical structure

factors Gij

lmσ,l′m′σ ′( �R) ( �R = �Ri − �Rj):

Gss ′
lmσ,l′m′σ ′(�k) =

∑
�R

′
e−i�k· �RGij

lmσ,l′m′σ ′( �R). (2)

G
ij

lmσ,l′m′σ ′( �R) can be expressed as

G
ij

lmσ,l′m′σ ′( �R) =




∑
µ

C(l1l, m− µµ)g∗
lm−µ,l′m′−µ( �R)

× C(l′1l′,m′ − µµ) (σ = σ ′)√
2l′ + 1

l′ + 1

∑
µ

C(l1l, m− µµ)g∗
lm−µ,l′−1m′−µ( �R)

× C(l′ − 11l′,m′ − µµ) σ = m, σ ′ = e)

−
√

2l′ + 1

l′ + 1

∑
µ

C(l1l, m− µµ)g∗
lm−µ,l′−1m′−µ( �R)

× C(l′ − 11l′,m′ − µµ) (σ = e, σ ′ = m)

(3)

where the Cs are the Clebsch–Gordon coefficients and g is the scalar geometrical structure
factor given by

glm,l′m′( �R) = 4π
∑
l′′m′′

il
′+l′′−lClm;l′m′;l′′m′′h

(1)
l′′ (κR)Yl′′m′′(− �R).

κ = ω/c andClm;l′m′;l′′m′′ is the Gaunt coefficient. h(1)l and Ylm are Hankel functions of the first
kind and spherical harmonic functions, respectively. In our calculations, the cut-off angular
momentum is set as Lmax = 7. Such a cut-off is sufficient for obtaining the desired precision
for the given range of frequencies.

In this paper, we concentrate on the band structures of AB3 and B3 photonic crystals of
metal spheres in air (see figure 1). The dielectric function for metals is approximately given by
ε(ω) = 1 −ω2

p/ω
2 where ωp is the plasmon frequency. When the photon frequency is higher

than the plasmon frequency ωp, the dielectric constant is positive. The dielectric contrast
between the metal spheres and air background is small, so the overall photonic structures
resemble the free-photon band structures in vacuum. However, the situation becomes quite
different when the photon frequency is far below the plasmon frequency; then the dielectric
constant takes a large negative value and electromagnetic waves cannot penetrate into the metal
spheres. Such exclusion of electromagnetic waves from the metal spheres restricts the photon
propagation modes which favours the formation of photonic band gaps. From the values of
dielectric constants listed in [32], it is found that the infrared frequency range corresponds
roughly to the dielectric constant ε = −200 while the dielectric constant takes a more negative
value, ε = −3900, when the frequency falls into the microwave range. Another factor that
one has to bear in mind is the metal absorption. From the same listing in [32], one notices
that the metal absorption can pose serious problems in the infrared frequency range and only
a good metal like silver does not affect the gap drastically [24]. But the absorption becomes
negligibly small when the frequency is in the microwave regime. As we shall see later, the
photonic band gap does not sensitively depend on the value of ε if it exceeds a threshold value.
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We choose ε = −200 in most of our calculations. For comparison, we also present some of
the band structures that were obtained using ε = −3900. All band structures are given in units
of reduced frequency ωa/2πc, where a is the lattice constant and c is the velocity of light
in vacuum.

Before presenting detailed numerical results, we would like to discuss the physical
mechanism of formation of the photonic band gap in photonic crystals made of metal spheres.
For photonic crystals composed of metal spheres embedded in a medium, the volumes
surrounded by neighbouring spheres form connected cavities. The frequencies of cavity modes
and separations among modes are inversely proportional to the sizes of the cavities. Therefore,
increasing the filling ratio has two impacts on the band-gap formation:

(1) the channels between neighbouring cavities become narrow, which reduces the coupling
among the modes in neighbouring cavities; thus the cavity-mode-induced bandwidths are
also reduced;

(2) the size of each cavity also gets reduced, which enhances the separations among modes
in the cavity.

These two opposite effects determine a critical filling ratio where the band gap starts to appear.
As the filling ratio increases further, the size of the gap increases until the spheres touch each
other. This is the origin of the opening of the lowest gap in the band structures. However, the
appearance of other gaps depends very much on the crystal symmetry, the material components
of the spheres, and the filling ratio. Thus, to create more than one gap, an appropriate structure
must be chosen.

In figure 2, we show the calculated photonic band structures of AB3 crystals composed of
metal spheres of one type in air. The filling ratio of the spheres is 0.26. There is a large absolute
gap between the R point in the dielectric band (the second band) and the X point in the air
band (the third band). The gap/mid-gap ratio (!ω/ωmid) approaches 34%. It is important for
applications to have a high gap/mid-gap ratio to compensate for the boundary effect of actual
crystals. The value of the gap/mid-gap ratio must be larger than 5% in order to be useful.
Note that the photonic band structures obtained using ε = −200 (figure 2(a)) and ε = −3900

Figure 2. The photonic band structures of AB3 crystals composed of metal spheres of one type
in air. The filling ratio is f = 0.26. The dielectric constant of the spheres is: (a) ε = −200;
(b) ε = −3900.
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(figure 2(b)) are almost the same except that figure 2(b) is raised slightly in comparison with
figure 2(a) because of the shorter penetration length in the latter case. This makes the effective
size of the cavities in the latter smaller than that in the former. The dependence of the gap size
on the filling ratio f is shown in figure 3. The size of the gap increases as the filling ratio of
spheres increases beyond a certain threshold (0.215). The upper gap edge increases a little, but
the lower gap edge declines dramatically because of rapid shrinking of the bandwidth with f .
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Figure 3. The gap size as a function of the filling ratio f for AB3 crystals. The inset gives the
dependence of the gap/mid-gap ratio on the filling ratio f . Here, ε = −200.

We also calculated the band structure of AB3 crystals where metal spheres A and B have
different radii, but are nearly touching. The gap size as a function of the ratio ra/rb (where ra

and rb are the radii of spheres A and B, respectively) is given in figure 4. The ratio varies from
0.42 to 30; the gap is found to be robust over the whole range studied. When the ratio ra/rb is
relatively large, only one gap exists. This can be understood from the structure of AB3 crystals
shown in figure 1(a). One sees that there are wide channels among neighbouring cavities.
They lead to strong coupling among the modes in those cavities inscribed by neighbouring
spheres. When the ratio is relatively small, the cavities are less connected, so the coupling is
weak enough for new gaps to open. Figure 5 gives the band structure of AB3 crystal where the
ratio ra/rb equals 0.42. In this case, the spheres are very closely packed and there are three
gaps in the band structure. From bottom to top, their gap/mid-gap ratios are 24.6%, 9.8%,
and 6.1%, respectively. This example shows that for some structures, more than one gap can
appear as the filling ratio increases.

This novel feature is also present in B3 photonic crystals where A spheres are all removed
from the AB3 structure. The band structures are shown in figure 6. The filling ratio of the
spheres f is 0.51, which is slightly smaller than the close-packed value 0.555. The use of a
small filling ratio is important in actual applications, because this can prevent the contact of
metal spheres, with the result that long-range currents cannot be formed and the dissipation
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Figure 4. The gap size as a function of the ratio ra/rb for AB3 crystals. A and B spheres are nearly
touching; ε = −200.
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Figure 5. The photonic band structure of AB3 crystal at ra/rb = 0.42 and ε = −200.

can be minimized. There are also three gaps in the band structures. From bottom to top, their
gap/mid-gap ratios are 10%, 5.1%, and 6.0%. From the B3 structure shown in figure 1(b), we
see that the channels among the neighbouring spheres are very narrow. Note that here again
similar band structures are obtained for the dielectric constants ε = −200 (figure 6(a)) and
ε = −3900 (figure 6(b)). In figure 7, the dependence of the gap as a function of the filling
ratio f is given. As the filling ratio increases, the channels become narrower and the sizes of
the gaps increase. When the size exceeds a certain value, a narrow band appears between the
second and third gaps. The feature of having more than one gap can be used in the design of
some important optical devices, such as an optical multi-band filters and optical multi-channel
perfect mirrors, at least in the microwave frequency range.
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Figure 6. The photonic band structures of B3 crystals composed of metal spheres in air. The filling
ratio is f = 0.51. The dielectric constant of the spheres is: (a) ε = −200; (b) ε = −3900.
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Figure 7. The gap size as a function of the filling ratio f for B3 crystals. Here, ε = −200.

In summary, the photonic band structure of AB3 crystal can contain a large gap over a
wide range of the ratio ra/rb. For the B3 structure, up to four gaps can be present over a certain
range of the filling ratio. This feature can be used in the design of an optical multi-channel
filter or an optical multi-channel perfect mirror in the microwave regime.
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